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Abstract
A new quantum model with rational functions for the potential and effective
mass is proposed in a stretchable region outside which both are constant.
Starting from a generalized effective mass kinetic energy operator the matching
and boundary conditions for the envelope wavefunctions are derived. It is
shown that in a mapping to an auxiliary constant-mass Schrödinger picture
one obtains one-period ‘associated Lamé’ well bounded by two δ-wells or δ-
barriers depending on the values of the ordering parameter β. The results for
bound states of this new solvable model are provided for a wide variation of
the parameters.

PACS number: 03.65.−w

1. Introduction

Effective mass theory has been used for years in several branches of modern physics such
as nuclear physics [1] or solid-state physics (see, e.g., the pioneering works [2–4]). This
theory is a useful tool for studying the motion of carriers in pure crystals and also for
the virtual-crystal approximation to the treatment of homogeneous alloys (where the actual
one-electron potential is approximated by a periodic potential), as well as of graded mixed
semiconductors (where the virtual-crystal potential is not periodic). The salient feature of this
theory is that it approximates a complicated physical situation to the solution of a Schrödinger
equation with position-dependent effective mass function, the so-called effective mass (EM)
eigenvalue equation. The position-dependent EM is also used in the construction of pseudo-
potentials, which have a significant computational advantage in quantum Monte Carlo method
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[5]. Needless to emphasize that the growing interest in semiconductor physics parallel to the
modern development in fabricating nanostructure technology creates a renewed attention to
study the behaviour of one-dimensional EM eigenvalue equation

HEM(x)ψ(x) ≡ [TEM(x) + V (x)]ψ(x) = Eψ(x) (1.1)

from a theoretical standpoint. In this equation TEM(x) is the EM kinetic energy operator
and ψ(x) is the EM wavefunction (also known as ‘envelope wavefunction’ in the literature
[4–18]). It has to be mentioned that the justification of this EM approximation in the context
of a realistic situation is not the purpose of the present study, rather we will concentrate on
the analysis of the spectral properties of the EM eigenvalue equation (1.1). The first step
is certainly to choose a suitable form of the Hermitian kinetic energy operator arising from
non-commutativity of momentum operator p ≡ −ih̄∂x and the effective mass operator m(x).
Different forms had been proposed in the literature, most of which may be written as a special
class of the general two-parameter family proposed in [9]:

TEM(x) = 1
4 (mαpmβpmγ + mγ pmβpmα), (1.2)

with the constraint α + β + γ = −1 over the ordering parameters.
Considerable efforts were made to remove the non-uniqueness of the kinetic energy

operator (1.2) or, in other words, to fix the values of the ordering parameters α, β, γ . In
[19] a step potential and a step mass were considered, and it was shown that α = γ is
the only physical choice for an abrupt heterojunction. Later in an attempt to fix β, two
different conclusions were drawn, namely β = 0 for a one-dimensional model [20] and
β = −1 for a three-dimensional model [21]. On the other hand, in a series of works
[14, 22, 23], the authors concluded that α = γ = 0, β = −1 for an abrupt heterojunction.
Among these works, [23] deserves to be mentioned separately because it presented the first
example of a continuous function m(x) across the heterojunction. A new kind of kinetic
energy operator was proposed [15] for strained heterostructure, which is not included in
(1.2), in general, for position-dependent lattice constant. It should be mentioned that the
choice α = γ = 0, β = −1 gives rise to the kinetic energy operator TEM = p(1/2m)p,
which was first proposed in [6]. Choosing the same operator some interesting pedagogical
models were considered [17, 24] to show the qualitative differences in quantum mechanical
observables (e.g. reflection and transmission coefficient, band-structure, etc) between EM and
constant-mass case. Many other forms of kinetic energy operator have also been proposed,
e.g., α = −1, β = 0, and γ = 0 which gives from (1.2) TEM = (1/4m)p2 + p2(1/4m)

[25], α = γ = −1/2, β = 0 which yields TEM = (1/2
√

m)p2(1/2
√

m) [26], etc. A
different variation was derived, via path-integral formalism [27], which comes from (1.2) for
the following values: α = (−√

2 + i)/3
√

2, β = −1/3, γ = α∗. It is therefore clear that no
universal choice for the ordering parameters exists in the literature of EM theory.

In recent times several authors [28–50] either started from a preferred ad hoc choice for
α, β, γ or kept them arbitrary. In both cases attention had been paid to solvability for various
smooth functional forms of V (x) and m(x) by employing the existing tools like supersymmetry
[29, 30, 34, 35, 40, 44–48], Lie-algebraic approach [32, 33, 35, 39], shape-invariance
[43, 46], etc. The connection between solvability and the ordering parameters in
equations (1.1) and (1.2) was discussed in [31]. On the full line, smooth functions (in
the sense that m′ and m′′ are also continuous) were chosen for the first time in [28], where
the authors however concluded again that α = γ = 0, β = −1 by comparing their results
with a limiting case where the potential and mass become abrupt. It may be mentioned that in
several works [33–35] mass function was kept arbitrary and thus the solutions provided there
were only formal. In contrast, in most cases where smooth functional forms were chosen for
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Figure 1. A schematic representation of the model: a variable mass and a potential well in the
interval (−x0, x0), and outside of this interval both are constant.

m(x), we note that m(x) → 0 as |x| → ∞. One possible way of eliminating this nonphysical
situation is to consider the variation of the mass in a finite region (being constant outside),
which is also natural on realistic grounds. Of course, this correction will force us to obtain
correct matching conditions for the model.

Quite justifiably we will use the generic kinetic energy operator (1.2) without imposing
any additional constraint over the ordering parameters. One of the purposes of our present
work is to show that a sensible quantum situation could be modelled by a continuous functional
form for V (x) and m(x), which are free from the above-mentioned defect of vanishing mass
at infinity. A new combination of rational forms will be chosen for both functions inside a
region, but outside they will be considered to be constant, that is to say, our EM Hamiltonian
is asymptotically equivalent to conventional constant-mass Hamiltonian. Our other purpose
is to study the properties of bound states of this model and to compare the results with the
constant-mass problem. The precise model chosen in the present work for m(x) and for the
potential is motivated by the following property: it allows the transformation to the auxiliary
spectral problem of a conventional (constant mass) Schrödinger equation, which is solvable.
In this sense this variable mass problem can also be characterized as solvable.

The structure of the paper is as follows. In section 2 we will introduce our model and
derive the appropriate matching conditions. Applying these conditions the equation for the
energies of the bound states will be obtained (the details of some of the issues dealt in this
section will be provided in appendix, for readers’ convenience). In section 3, we will map
the whole problem in an auxiliary constant-mass Schrödinger picture and obtain the correct
physical range of bound-state energies of our EM potential. A limiting case will be considered
in section 4, where the potential becomes the well-known harmonic oscillator. In section 5,
we will solve numerically the transcendental energy equation for bound states and examine
the spectral properties for a wide range of the parameters. Some characteristic differences
from the constant-mass case will be noted here. Section 6 will contain a description of some
interesting features of bound-state wavefunctions, obtained by the analysis of the numerical
results of the previous section. We will end with our conclusion in section 7.

2. A model Hamiltonian and the energy equation

2.1. The model

To start with, we will introduce a hypothetical sample shown in figure 1, consisting of two
materials, which produces a variation of mass in a stretchable region (−x0, x0). We are
interested in this exposition to study the bound states of a particle in the presence of a local
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potential V (x):

V (x) =
{
fV (x), |x| � x0,

fV (x0) ≡ V0 = constant, |x| > x0,
(2.1)

where the function fV (x) is chosen to be

fV (x) = Ak2

1 + x2
+

Bk2

1 + k′2x2
+ Ck′2x2 + D. (2.2)

The potential function depends on three classes of parameters : (i) the ordering parameters
α, β, γ ∈ R of the kinetic term (1.2), such that α + β + γ = −1 , (ii) the elliptic modulus
parameter k2 ∈ (0, 1) or the complementary modulus k′2 = 1 − k2 and (iii) the ‘Lamé
parameters’ µ, ν ∈ N (this terminology will be explained shortly). The four constants
A,B,C,D are expressed in terms of these parameters as

A = 4(1 + β − η) −
(

µ +
1

2

)2

, B =
(

ν +
1

2

)2

− 4(1 + β − η),

C = 2[8η − 5β − 6] − 2, D = (1 + β)(3k2 + 2) − 4ηk2 +
k2

4
− 1.

(2.3)

In the above expressions the quantity η stands for η = 1 + β + α(α + β + 1). The point x0

depends on k by x0 = 1/
√

k′ and the mass function is given by

m(x) =
{
fm(x), |x| � x0,

fm(x0) ≡ m0 = constant, |x| > x0,
(2.4)

where

fm(x) = [(1 + x2)(1 + k′2x2)]−1. (2.5)

It should be stressed that the choice of this particular model is made because it not
only provides a continuous mass function with physically reasonable non-vanishing limit at
infinity, but also leads to well-known associated Lamé equation, as we shall show subsequently.
Thus, our task now is to solve the eigenvalue equation (1.1) for the general kinetic energy
operator (1.2) with the potential V (x) and mass m(x) given by (2.1)–(2.5). Choosing for our
convenience the scale h̄2 = 2, this equation may be written as

ψ ′′(x) − m′

m
ψ ′(x) +

[
m{E − V (x)} − 1 + β

2

m′′

m
+ η

(
m′

m

)2
]

ψ(x) = 0, (2.6)

where throughout this paper prime and dot will denote derivatives with respect to x and z,
respectively.

2.2. Matching conditions

To derive the correct matching and boundary conditions for the envelope wavefunction ψ(x),
we note that the presence of m′′/m in (2.6) produces a δ-discontinuity at the two junctions
x = ±x0. Thus, ψ ′ must have a definite jump at these junctions to balance these singularities
in the EM eigenvalue equation (2.6). To calculate precisely these jumps, we will express m(x)

and V (x) in terms of the Heaviside 	-function

	(x) =


1, x > 0,

1/2, x = 0,

0, x < 0,

[	′(x) = δ(x)] (2.7)

as

m(x) = m0
(x) + fm(x)[1 − 
(x)], V (x) = V0
(x) + fV (x)[1 − 
(x)], (2.8)
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where


(x) = 	(−x+) + 	(x−), x± = x ± x0. (2.9)

It may be noted at once that, due to the cancellation effect, m′ will not contain δ-
discontinuity. Thus, we get

m′(x) = f ′
m(x)[1 − 
(x)], m′′(x) = f ′′

m(x)[1 − 
(x)] − f ′
m(x)
′(x). (2.10)

It is obvious that the first-order derivative term in (2.6) could be eliminated by introducing the
transformed function

φ(x) = ψ(x)/
√

m(x). (2.11)

The EM eigenvalue equation (2.6) reduces to

φ′′(x) =
[
m{V (x) − E} +

β

2

m′′

m
+

(
3

4
− η

)(
m′

m

)2
]

φ(x). (2.12)

Integration of equation (2.12) with respect to x in the interval [x0 − ε, x0 + ε] yields

φ′(x)

∣∣∣x0+ε

x0−ε
=

∫ x0

x0−ε

[
fm{fV − E} +

β

2

f ′′
m

fm

+

(
3

4
− η

) (
f ′

m

fm

)2
]

φ(x)

+ m0(V0 − E)

∫ x0+ε

x0

φ(x) dx − β

2

∫ x0+ε

x0−ε

f ′
m

fm

δ(x−)φ(x) dx. (2.13)

Let us note that for our model the wavefunction ψ(x) must be continuous4 on the full line, for
otherwise ψ ′′(x) would have stronger singularity than that from the term m′′ in equation (2.6).
It then follows from (2.11) that φ(x) is a continuous function. Hence all integrands in (2.13)
are continuous except the last term. Thus letting ε → 0, we will obtain the jump at x = x0:

�φ′|x=x0 = −β

2

f ′
m(x0)

fm(x0)
φ(x0). (2.14)

Proceeding similarly for the other junction x = −x0:

�φ′|x=−x0 = β

2

f ′
m(−x0)

fm(−x0)
φ(−x0). (2.15)

We thus derive the following conditions for the envelope wavefunction ψ and its derivative:

a) ψ(x) is continuous,

b) �
(

ψ√
m

)′∣∣∣∣
x=±x0

= ∓β

2

f ′
m(±x0)

fm(±x0)

ψ(±x0)√
m(±x0)

,
(2.16)

and for the bound-state wavefunctions

c)
∫ ∞

−∞
|ψn(x)|2 dx = 1, (normalizability). (2.17)

4 The case of discontinuity in both V (x) and m(x) (e.g. potential-mass step [19] or a quantum well with mass
mismatch) corresponds to discontinuity of ψ(x) [51].
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2.3. Expressions for wavefunctions

The EM eigenvalue equation (2.12) takes the following form in the three regions:

φ′′(x) =
{

κ2φ(x), |x| > x0[
fm(x){fV (x) − E} + β

2
m′′
m

+
(

3
4 − η

)(
m′
m

)2]
φ(x), |x| < x0,

(2.18)

in which we have used the abbreviation

κ2 = m0(V0 − E). (2.19)

In this exposition we are primarily interested in bound states and thus the quantity κ

in (2.19) will be always real and nonzero. The scattering states for which E � V0 will be
discussed at length elsewhere. The acceptable solutions of (2.18) for |x| > x0 are

φ(x) =
{
N− eκx, x < −x0

N + e−κx, x > x0,
(2.20)

where κ is taken as positive square root of (2.19) and the constants N± have to be determined
from the conditions (a)–(c). In the intermediate region the reformulation of equation (2.18)
is useful to solve the spectral problem. The crucial observation is that this equation may be
transformed into the well-known associated Lamé equation [52–57],

χ̈ (z) − k2

[
µ(µ + 1)sn2z + ν(ν + 1)

cn2z

dn2z
− E

k2

]
χ(z) = 0, (2.21)

by means of the following changes of variables:

x(z) = sn z/cn z, χ(z) = [fm(x(z))]1/4φ(x(z)). (2.22)

In the above equations sn z ≡ sn(z, k), cn z ≡ cn(z, k) and dn z ≡ dn(z, k) are three
Jacobian elliptic functions of real modulus k. Since the parameters µ, ν enter in the
associated Lamé potential (2.21), we will reserve the terminology ‘Lamé parameters’ for
them. Note that equation (2.21) is of period K or 2K according as µ = ν or µ 
= ν, where
K(k) = ∫ π/2

0 dτ/
√

1 − k2 sin2 τ is the complete elliptic integral of second kind. The Lamé
parameters can be chosen as any integral pair, but for simplicity we will choose µ = ν = 1. In
this context it may be emphasized that the associated Lamé equation (2.21) for µ = ν can be
mapped via coordinate transformation z̃ = (1+k′)z to ordinary Lamé equation with a different
modulus parameter k̃ = (1−k′)/(1+k′) and the energy variable Ẽ = −µ(µ+1)k̃+E/(1+k′)2

through the use of the relation sn(z̃, k̃) = (1 + k′)sn(z, k)cn(z, k)/dn(z, k). However, in our
auxiliary variable z, equation (2.21) represents associated Lamé equation, and for µ = ν it
becomes K-periodic. This means that we are going to consider this equation in a single period
(−K/2,K/2).

At this stage it is worth mentioning that the region (−x0, x0) of material 2 must be so
chosen that it may be stretched as large as we please, but it will be always finite (it must
be surrounded by material 1). On the other hand, it cannot be shrunk to a point due to the
presence of material 2 (see figure 1). For this reason we need to exclude the points z = ±K

from the domain of equation (2.21), as it can be easily verified from transformation (2.22) that
these points lead to x = ±∞. For definiteness we have chosen the interval z ∈ (−K/2,K/2)

which just corresponds to x ∈ (−x0, x0), where x0 = 1/
√

k′. Let us remark about two
well-known limits k → 1 and 0, which are usually considered for elliptic functions. Note that
as k → 1, the complementary modulus k′ → 0 and consequently x0 goes to infinity. Thus
k → 1 limit is not allowed in our model. But the other limit k → 0 may be considered as
it allows the shrinking of the region (−x0, x0) up to a finite interval (−1, 1). The general
solutions of equation (2.21) for arbitrary energy E, which we need, were obtained only recently
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in [57, 58]. Here we will not describe the method of obtaining these solutions, but for readers’
convenience, we have included a self-contained brief introduction about elliptic functions in
appendix. The two linearly independent solutions5 of (2.21) are (for three exceptional cases
see below)

χ1,2(z) =
∏2

i=1 σ(z − iK ′ ± ai)

σ (z − iK ′ + ω1)σ (z − iK ′)
exp[(z − iK ′){ζ(ω1) ∓ ζ(a1) ∓ ζ(a2)}], (2.23)

where ai(E) are to be determined from the equation ℘(ai) = ci, ci being zeros of the following
quadratic equation (see equations (4)–(5) in [57]):

c2 + (E − 4 + e1)c + (3e1 − e2 − 2e1e3 − e1E) = 0. (2.24)

Here, ei are always real (e1 > e2 > e3) defined by ℘(ωi) = ei, ω1 and ω3 are half-periods
of Weierstrass elliptic function ℘(z) (see appendix for more details). For the numerical
convenience, here we have chosen the scale e1 − e3 = 1 so that ω1 = K,ω3 = iK ′, ω2 =
ω1 + ω3,K

′(k) = K(k′). Thus, the solution in the intermediate region takes the form

χ(z) = d1χ1(z) + d2χ2(z). (2.25)

The constants d1, d2 have to be fixed from the conditions (a)–(c). Before proceeding to do that,
we would like to point out that for special values of E = E(j), j = 0, 1, 2 both solutions χ1(z)

and χ2(z) become identical and coincide to periodic (or anti-periodic) band-edge solutions
χ(j). The explicit expressions for these solutions [53] and corresponding values of ai in (2.24)
are

χ(0) = dn z + k′/dn z, E(0) = 2 + k2 − 2k′, a1 = −a2 = ω1/2,

χ(1) = dn z − k′/dn z, E(1) = 2 + k2 + 2k′, a1 = −a2 = −ω3 + ω1/2,

χ(2) = sn zcn z/dn z, E(2) = 4, a1 = ω3, a2 = ω2.

(2.26)

Thus, for E = E(j) the two linearly independent solutions of associated Lamé equation (2.21)
may be given as

χ1(z) = χ(j)(z), χ2(z) = χ1(z)

∫ z dτ

[χ1(τ )]2
. (2.27)

It should be emphasized that in our model the situation is different from that of periodic
associated Lamé equation [53, 55] because equation (2.21) is considered in only one period
(−K/2,K/2). We will show later that the discrete energy levels of our EM Hamiltonian
lie inside the allowed bands of constant-mass periodic associated Lamé Hamiltonian, and
corresponding wavefunctions ψ(x) are obtained from (2.20) and (2.23).

2.4. Energy equation for bound states

The continuity condition and slope-discontinuity requirement (2.16) can be expressed in a
single pair of equations

N±m
1
4
0 e−κ/

√
k′ = d1χ

±
1 + d2χ

±
2 , (2.28)

N±(β
√

k′ + κ) e−κ/
√

k′ = d1

(
∓m

1
4
0 χ̇±

1 −
√

k′

2
m

− 1
4

0 χ±
1

)
+ d2

(
∓m

1
4
0 χ̇±

2 −
√

k′

2
m

− 1
4

0 χ±
2

)
,

(2.29)

5 The notations for the Lamé parameters µ, ν in [57, 58] are m, �.
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where we have used the abbreviations

χ±
i = χi(±K/2), χ̇±

i = χ̇i(±K/2), i = 1, 2. (2.30)

Eliminating N± from (2.28)–(2.29), we obtain a homogeneous linear system for d1, d2:

d1
[
2m

1/4
0 χ̇+

1 + m
−1/4
0 Bχ+

1

]
+ d2

[
2m

1/4
0 χ̇+

2 + m
−1/4
0 Bχ+

2

] = 0,

d1
[
2m

1/4
0 χ̇−

1 − m
−1/4
0 Bχ−

1

]
+ d2

[
2m

1/4
0 χ̇−

2 − m
−1/4
0 Bχ−

2

] = 0,

where the quantity B reads

B = (2β + 1)
√

k′ + 2κ. (2.31)

Demanding for non-trivial solutions of d1, d2 from the previous system of equations, we have
obtained our energy equation in the following form:

4m0(T
−

2 − T +
2 ) + 2

√
m0B(Ṫ −

1 + Ṫ +
−) + B2(T +

1 − T −
1 ) = 0, (2.32)

where

T ±
1 = χ±

1 χ∓
2 , Ṫ ±

1 = χ̇±
1 χ∓

2 − χ±
1 χ̇∓

2 , T ±
2 = χ̇±

1 χ̇∓
2 . (2.33)

In particular for E 
= E(j), j = 0, 1, 2, the energy equation (2.32) may be further simplified
by inserting the expressions for χ̇±

i from equation (2.23) (see appendix) and then the energy
equation reduces to the form

[4m0A
2
− − 4B

√
m0A− + B2]T −

1 − [4m0A
2
+ + 4B

√
m0A+ + B2]T +

1 = 0, (2.34)

where A± are given by

A± = ±1

2

[
2∑

i=1

℘̇
(

ω1
2 + ω3

) ∓ ℘̇(ai)

℘
(

ω1
2 + ω3

) − ℘(ai)
− ℘̇

(
ω1
2 + ω3

)
℘

(
ω1
2 + ω3

) − e1

]
(2.35)

Hence, similar to the well-known textbook example of the finite square well potential,
we have to deal with the transcendental energy equations (2.32) and (2.34). It is clear from
the structure of equation (2.34) that for T −

1 = T +
1 , some roots will be given by the equation

A− − A+ = 0. But one may note from (2.35) that this equation will be true if and only if∑
℘̇(ai) = 0. The latter condition is, however, satisfied only for band-edge energies E = E(j),

mentioned in equation (2.26). This clearly implies that the roots E = E(j) of (2.34) have
to be discarded, because for these values the correct energy equation is (2.32), where χi s
are given by (2.26) and (2.27). It may be mentioned that we have checked numerically for
different values of the potential parameters that the energy equation (2.32) is not satisfied for
E = E(j). This means that for those cases the band-edge energies of periodic associated Lamé
Hamiltonian are not roots of the energy equation for bound states of our EM Hamiltonian.
Thus, we will solve numerically equation (2.34) for E, and the roots, if they exist, may lie in
principle inside the allowed and forbidden bands. However, the numerical results could be
well handled if we have, a priori, some analytical insight from the theory. To achieve this
insight we have to fall back upon the auxiliary constant-mass Schrödinger equation of which
we know very well the structure of the spectrum. In the following section, we will obtain an
image of our EM model in this conventional Schrödinger language.

3. Auxiliary constant-mass equation

Our purpose is to extend (2.21) onto the whole z-axis in the form

−χ̈(z) + Ṽ (z)χ(z) = Eχ(z), (3.1)
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which can be viewed as a constant-mass Schrödinger equation for a single particle of unit mass
(according to our chosen scale h̄2 = 2). Of course, equation (3.1) plays the role of auxiliary
equation, and our aim is to extract general information about its spectral properties, which
could be used as a guide in our numerical procedure for physical model (1.1). The observation
here is that this can be achieved by extending transformations (2.22) to the entire z-axis:

z =
∫ x √

m(τ) dτ, χ(z) = [m(x(z))]−1/4ψ(x(z)). (3.2)

But there are two subtle points which should be taken into account to obtain the correct
expression for the Schrödinger potential Ṽ (z). In the first place, since m(x) is continuous,
the new coordinate z(x) should also be continuous. It will then follow from (3.2) that the
constant-mass wavefunction χ(z) is also continuous function of z. One can achieve this
by exploiting the arbitrariness in the indefinite integral in (3.2). Indeed the explicit relation
between z and x is

x(z) =


(z − λ−)/
√

m0, −∞ < z < −K/2,

sn z/cn z, −K/2 < z < K/2,

(z − λ+)/
√

m0, K/2 < z < ∞,

(3.3)

where λ± = ±(K/2 − √
m0x0). The second point is even more fundamental concerning the

nature of m′ and m′′ in the whole region x ∈ R. We have mentioned in subsection 2.2 that due
to the cancellation effect m′ will contain 	-discontinuity and consequently m′′ will produce
δ-discontinuity at the two junctions x = ±x0. Noting that δ(bx) = δ(x)/|b|, the Schrödinger
potential Ṽ (z) may be expressed in the following form:

Ṽ (z) = V0
̃(z) + f̃ V (z)[1 − 
̃(z)] +

(
β +

1

2

)
(1 + k′)[δ(z+) + δ(z−)], (3.4)

where

f̃ V (z) = 2k2

[
sn2z +

cn2z

dn2z

]
, 
̃(z) = 	(−z+) + 	(z−), z± = z ± K/2. (3.5)

The point to be noted here is the β dependence of the shape of Ṽ (z) at the two junctions
z = ±K/2. It should be kept in mind that although the auxiliary constant-mass Schrödinger
wavefunction χ(z) is continuous, its derivative is not. In this sense the auxiliary Schrödinger
equation (3.1) is not exactly in conventional form. One may check readily from the matching
condition (2.16) that

�[χ̇(z)]|z=±K/2 =
(

β +
1

2

)
(1 + k′)χ±. (3.6)

To understand the correct range of E for bound states, we will consider separately three cases:
β > −1/2, β = −1/2 and β < −1/2.

Case 1: β > −1/2. In this case there will be a well, determined by one-period associated
Lamé potential f̃ V (z) in the region (−K/2,K/2), bounded by two δ-barriers, and outside
this region a constant potential V0. Three possible situations may arise (see figure 2). Clearly
there may be bound states in the range (f̃ V )min < E < V0 if and only if (f̃ V )min < V0.

Case 2: β = −1/2. In this case the δ-barrier will disappear and for bound states the conclusion
is the same as before.

Case 3: β < −1/2. In this situation the shape of the associated Lamé well provides no
restrictions from below on the bound-state energies due to the presence of two δ-wells at the
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−K/2 K/2 z

V0f̃V (z)

δ barriers

Figure 2. Three possible positions of the constant-mass Schrödinger potential Ṽ (z) are shown for
β > −1/2. For β = −1/2 δ-barriers disappear, and for β < −1/2 there are two δ-wells at the
junctions.

two junctions z = ±K/2. We thus conclude that the bound states may exist in the range
−∞ < E < V0.

In the following section we will consider the limit k → 0 and will write the explicit
energy equation for this limit. Before concluding this section it may be mentioned that in the
k → 0 limit, f̃ V (z) ≡ 0 and Ṽ (z) reduces to

Ṽ (z) → V0
̃(z) + (2β + 1)[δ(z+) + δ(z−)], (3.7)

where z± → z ± π/4. Thus, for β � −1/2, (cases 1 and 2 above) bound states may exist in
the range 0 < E < V0 and for β < −1/2 the possible range is −∞ < E < V0.

4. A limiting case : k → 0

It is well known that the Jacobian elliptic functions degenerate into trigonometric and
hyperbolic functions in k → 0 and k → 1 limits. We have already pointed out that k → 1
limit is prohibited6 in our model, as this limit corresponds to the nonphysical situation of
vanishing mass for large |x|. In the k → 0 limit, the intermediate region shrinks up to the
interval (−1, 1) inside which the harmonic oscillator well V (x) and the mass function m(x)

are

V (x) =
{
Cx2 + D, |x| � 1
V0, |x| � 1,

m(x) =
{
(1 + x2)−2, |x| � 1
1/4, |x| � 1.

(4.1)

In the two infinite regions −∞ < x < −1 and 1 < x < ∞, the solutions will be given
by (2.11) and (2.20), where κ,m0 and V0 take the limiting forms

κ →
√

V0 − E/2, m0 → 1/4, V0 → 5 + 8[β + 2α(α + β + 1)]. (4.2)

In the intermediate region, we have obtained the free-particle equation

−χ̈(z) = Eχ(z), z ∈ (−π/4, π/4), (4.3)

where transformations (2.22) now reduce to

x = tan z, χ(z) = (sec z)ψ(x(z)). (4.4)

6 But this limit becomes interesting if different boundary conditions are adopted [59].
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Thus, the envelope wavefunction of (1.1) for k → 0 acquires the form

ψ(x) =


N− eκx/2, x < −1,

d1 ei
√

E tan−1(x) + d2 e−i
√

E tan−1(x)

√
1 + x2

, |x| < 1,

N + e−κx/2, x > 1.

(4.5)

As before, imposing the matching conditions, we obtain homogeneous linear systems for
d1, d2

d1 ei
√

Eπ/4[B + i
√

E] + d2 e−i
√

Eπ/4[B − i
√

E] = 0,

d1 e−i
√

Eπ/4[B − i
√

E] + d2 ei
√

Eπ/4[B + i
√

E] = 0.

Thus the energy equation for bound states (E < V0) in the k → 0 limit is as follows:

(B2 − E) sin
(π

2

√
E

)
+ 2B

√
E cos

(π

2

√
E

)
= 0, (4.6)

where B is given by (2.31) for k′ → 1. One may note at once that E = 0 is a trivial root of
equation (4.6), but it must be rejected, because the solution ψ(x) for the intermediate region
(−1, 1), given in (4.5), is valid for E 
= 0. Indeed, for E = 0 one may rewrite the solution as

ψ(x) = 1√
1 + x2

[d1 tan−1 x + d2], −1 < x < 1, (4.7)

the expressions in two semi-infinite regions being the same as in (4.5). In this case the
matching conditions give the following constraints for the existence of zero energy root:

V0 = (2β + 1)2, β < −1

2
, or V0 =

[
2β + 1 +

4

π

]2

, β < −
(

1

2
+

2

π

)
,

(4.8)

and correspondingly in (4.7) either d1 = 0 or d2 = 0. We have checked that constraints (4.8)
are not satisfied for different cases, so that zero energy state does not exist for them.

5. Numerical results for bound states

In this section we will solve numerically the energy equations (2.34) (and (4.6) for k → 0
limit) in the range Ṽmin < E < V0, where Ṽmin denotes the minimum of auxiliary potential
Ṽ (z) given by (3.4) (and (3.7)). It may be mentioned that the energy equations depend on two
classes of parameters : (i) ordering parameters α, β, γ connected by α + β + γ = −1 and (ii)
elliptic modulus k2(0 � k2 < 1) or the complementary modulus k′2 = 1 − k2. Thus we have
examined the roots of the energy equations for bound states as a function of both these two
classes of parameters. Our strategy is to vary these parameters in such a way that it will cover
some of the special forms of kinetic energy operator (1.2) mentioned in the introduction.

5.1. One-parameter family of kinetic energy operator for α = γ

In this case kinetic energy operator (1.2) reduces to

TEM(x) = 1
2 (mαpmβpmγ ), 2α + β = −1. (5.1)

We will first obtain E as a function of k2 ∈ [0, 1) for the two values of β: β = −1 and β = 0.

Case β = −1. For the choice β = −1, the kinetic energy operator (5.1) takes the following
form:

TEM(x) = 1

2

(
p

1

m
p

)
. (5.2)
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Table 1. The bound-state energies are calculated for β ∈ [−2, 2] and α = γ, k2 = 0 along with
V0, Vmin (x0 = 1). The bound states are observed only in the range [−0.4,−0.1].

β Vmin V0 E

−0.10 0.80 0.96 0.94
−0.20 0.60 0.84 0.81
−0.30 0.40 0.64 0.62
−0.40 0.20 0.36 0.35

Although in this case the upper and lower limits for bound states are

V0 = 9k2(1 − k′)
4(1 + k′)

− (1 + 2k′) +
k2

4
, (5.3)

and Ṽmin = −∞, since β < −1/2 (see equation (3.4)), no bound states are obtained in this
range.

Case β = 0. This choice of β corresponds to the kinetic energy operator

TEM(x) = 1

2

(
1√
m

p2 1√
m

)
. (5.4)

Here, the range is

V0 = 5k2(1 − k′)
4(1 + k′)

+ 1 +
k2

4
, Ṽmin = 2k2. (5.5)

In the interval (Ṽmin, V0) there exist no bound states for k2 ∈ [0, 1).
Next we will study the bound-state energies as a function of β ∈ [−2, 2] for the two

cases: k2 = 0 and k2 = 0.5.

Case k2 = 0. The upper limit V0 has a parabolic dependence on β, given by

V0 = 1 − 4β2, (5.6)

and the lower limit is

Ṽmin =
{

0, − 1
2 � β � 2,

−∞, −2 � β < − 1
2 .

(5.7)

Our numerical calculation shows the existence of one bound state near the top of the well for
−0.4 � β � −0.1 (see table 1).

Case k2 = 0.5. In this case also the upper limit V0 has a parabolic dependence on β, given by

V0 = 69 − 29
√

2

20
− 5

4

(
β − 2

√
2 − 1

5

)2

, (5.8)

while the lower limit is given by

Ṽmin =
{

1, − 1
2 � β � 2,

−∞, −2 � β < − 1
2 .

(5.9)

No bound states exist in this range.
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Figure 3. Bound-state energies as a function of k2 are shown by dots for the case α = −1, β =
γ = 0. The lower and upper gray curves represent first two band-edge energies E(j), j = 0, 1 for
the corresponding constant-mass periodic associated Lamé potential.

Table 2. Bound-state energies are provided for k2 ∈ [0, 1) where α = −1, β = γ = 0. The point
x0 and V0, Vmin for V (x) are shown in each case. Bound states start to appear from k2 � 0.90.

k2 x0 Vmin V0 E

0.90 1.78 0.32 2.64 2.63
0.80 1.50 0.40 2.88 2.59
0.70 1.35 0.48 3.13 2.51
0.60 1.26 0.55 3.38 2.43
0.50 1.19 0.62 3.65 2.35
0.40 1.14 0.70 3.91 2.28
0.30 1.09 0.78 4.18 2.20
0.20 1.06 0.85 4.45 2.12
0.10 1.03 0.92 4.73 2.04
0.00 1.00 1.00 5.00 1.96

5.2. Two-parameter family of kinetic energy operator for α 
= γ

We will find E as a function of k2 for α = −1, β = 0 which yields following kinetic energy
operator:

TEM(x) = 1

4

[
1

m
p2 + p2 1

m

]
. (5.10)

The bounds are given by

V0 = 3k2(1 − 2k′)
2(1 + k′)

+ 4k′ + 1, Ṽmin = 2k2. (5.11)

We have obtained one bound state of the potential (see table 2) for 0 � k2 � 0.90. The
effective mass potential V (x) maintains the shape of the well for all k, and in particular for
k = 0 it becomes well-known harmonic oscillator inside the interval (−x0, x0), the minima
being at x = 1. It is interesting to observe that the bound state exists inside the first allowed
band of periodic constant-mass associated Lamé potential (see figure 3).
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Ṽmin

β
-2 -1.5 -1 -0.5 0.5 1

2

4

6

8

10

12

14

Figure 4. Bound-state energies (dots) as a function of β for α 
= γ, α = −1, k2 = 0.

Table 3. The bound-state energies as a function of β ∈ [−2, 2] for α = −1 
= γ, k2 = 0 are given
with Vmin and V0 (x0 = 1). The asterisk in β indicates that V (x) is a constant potential.

β Vmin V0 E

0.40∗ 1.80 1.80 1.69
0.20 1.40 3.40 1.91
0.00 1.00 5.00 1.96

−0.20 0.60 6.60 1.96; 6.36
−0.40 −0.20 8.20 1.94; 6.83
−0.60 −0.20 9.80 1.91; 7.00
−0.80 −0.60 11.40 1.86; 7.03
−1.00 −1.00 13.00 1.79; 6.97
−1.20 −1.40 14.60 1.72; 6.86; 14.14
−1.40 −1.80 16.20 1.64; 6.70; 14.61
−1.60 −2.20 17.80 1.54; 6.48; 14.79
−1.80 −2.60 19.40 1.43; 6.24; 14.81
−2.00 −3.00 21.00 1.31; 5.95; 14.72

The dependence of bound-state energy E on β will now be calculated again for two cases:
k2 = 0 and k2 = 0.35, while β will vary in the same interval [−2, 2] and α will be fixed as
α = −1.

Case k2 = 0, α = −1, γ = −β. Here the upper limit V0 is linearly dependent on β and is
given by

V0 = 5 − 8β, (5.12)

and the lower limit Ṽmin is same as given by (5.7). The results, shown in figure 4, are the
following:

• No bound states for 0.5 � β � 2,
• One bound state for −0.1 � β � 0.4,
• Two bound states for −1.0 � β � −0.2,
• Three bound states for −2.0 � β � −1.1.

One can note that for β = 0.4, V (x) ≡ 1.8 is a constant potential (see table 3), but
still there exists one bound state. However, we have already explained in section 3 that this
apparently strange behaviour is perfectly consistent with constant-mass Schrödinger picture.
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Table 4. The bound-state energies as a function of β ∈ [−2, 2] for α = −1 
= γ, k2 = 0.35 are
given with Vmin and V0 (x0 = 1.11).

β Vmin V0 E

0.40 1.96 1.98 1.98
0.20 1.35 3.01 2.20
0.00 0.74 4.05 2.24

−0.20 0.13 5.08 2.23
−0.40 −0.48 6.11 2.20; 5.67
−0.60 −1.09 7.14 2.16; 5.86
−0.80 −1.70 8.18 2.10; 5.89
−1.00 −2.31 9.21 2.04; 5.83
−1.20 −2.92 10.24 1.96; 5.71
−1.40 −3.53 11.27 1.87; 5.54; 11.04
−1.60 −4.14 12.31 1.77; 5.34; 11.35
−1.80 −4.75 13.34 1.66; 4.96; 11.43
−2.00 −5.36 14.37 1.53; 4.82; 11.40

In this context it may be mentioned that the existence of bound states for constant potential
was also noted in [38] for m(x) = sech2qx.

Case k2 = 0.35, α = −1, γ = −β. This case also corresponds to linear dependence of V0 on
β

V0 = 4.05 − 5.16β, (5.13)

and the lower limit is given by

Ṽmin =
{

0.7, β � −1/2,

−∞, β < −1/2.
(5.14)

The results shown in table 4 are the following:

• No bound states for 0.5 � β � 2,
• One bound state for −0.2 � β � 0.4,
• Two bound states for −1.2 � β � −0.3,
• Three bound states for −2 � β � −1.3.

Once again we have observed that the ground state lies inside the allowed band and higher
excited states are inside the continuum (see figure 5) for the constant-mass periodic associated
Lamé potential characterized by µ = ν = 1; k2 = 0.35.

6. Some features of bound-state wavefunctions

In this section we will present some interesting properties of the wavefunctions ψ(x) that can
be derived from the numerical results of the previous section with very good accuracy. A part
of these properties, which seems to be difficult to prove analytically, does not concern the
specific physical problem. We recall that ψ(x) is given by (up to the normalization factor)

ψ(x) =


m

1/4
0 χ− eκ(x0+x), −∞ < x < −x0,

f
1/4
m (x)χ(z(x)), −x0 < x < x0,

m
1/4
0 χ+ eκ(x0−x), x0 < x < ∞,

(6.1)
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Figure 5. Bound-state energies (dots) as a function of β are plotted for α 
= γ, α = −1, k2 = 0.35.
The grey lines represent band-edge energies of corresponding associated Lamé potential.

where χ(z(x)) = χ2(z(x)) + (d1/d2)χ1(z(x)) and χ± ≡ χ(±K/2). Note that for k 
= 0,
χi(z(x)) are given by (2.23) for x(z) = sn z/cn z, and for k = 0, χ1,2(z(x)) = exp[±i

√
Ez]

for x(z) = tan z. The quantity κ is to be computed from (2.19) for E = En,En being the
bound-state energies of our EM Hamiltonian. In the following we will use the notation

κn =
√

m0(V0 − En), n = 0, 1, 2. (6.2)

6.1. Ground state

The two quantities a1 and a2 in (2.23) are complex and related by

a1 = −a∗
2 . (6.3)

The real and imaginary parts of χi(z) are respectively odd and even functions. Moreover χi(z)

satisfy following interesting relations with very high accuracy:

χ1(z) = d2

d1
χ2(−z), χi(z) = −χ∗

i (−z), (6.4)

where the ratio d2/d1 is a positive number. It will then follow that χ(z) is an even function
and

χ(z) = χ(−z) ∝ Im[χ1(z)] ≡ v(z). (6.5)

The ground state wavefunction is

ψ0(x) =


C0m

1/4
0 v

(
K
2

)
eκ0(x0+x), x < −x0,

C0f
1/4
m (x)v(z(x)), |x| < x0,

C0m
1/4
0 v

(
K
2

)
eκ0(x0−x), x > x0.

(6.6)

It is straightforward to compute the normalization constant C0 from (2.17)

1

C0
=

[
v2(K/2)√
V0 − E0

+
∫ x0

−x0

√
fm(x)v2(z(x)) dx

]1/2

. (6.7)
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6.2. First excited state

The quantity a1 is purely imaginary while the other quantity a2 is complex and they are related
by

Im[a1] = Im[a2]. (6.8)

The relation between χ1(z) and χ2(z) are

χ1(z) = −d2

d1
χ2(−z), (6.9)

where d2/d1 is a positive number. Clearly this implies that

χ(−z) = −χ(z) = complex . (6.10)

We have checked numerically with the same high accuracy that

Re[χ(z)] ∝ Im[χ(z)], (6.11)

and of course no degeneracy exists for E = E1. The wavefunction is

ψ1(x) =


−C1m

1/4
0 Re[χ+] eκ1(x0+x), x < −x0,

C1f
1/4
m (x) Re[χ(z(x))], |x| < x0,

C1m
1/4
0 Re[χ+] eκ1(x0−x), x > x0.

(6.12)

6.3. Second excited state

The two quantities a1 and a2 have same properties as in the above case. The relation between
χ1(z) and χ2(z) reads in this case

χ1(z) = d2

d1
χ2(−z),

(
d2

d1
< 0

)
. (6.13)

Thus, here also χ(z) is complex and

χ(−z) = χ(z), (6.14)

but

Re[χ(z)] ∝ Im[χ(z)]. (6.15)

The wavefunction is

ψ2(x) =


C2m

1/4
0 Re[χ+] eκ2(x0+x), x < −x0,

C2f
1/4
m (x)Re[χ(z(x))], |x| < x0,

C2m
1/4
0 Re[χ+] eκ2(x0−x), x > x0.

(6.16)

The normalization constants Cn, n = 1, 2 may be expressed as

1

Cn

=
[

(Re[χ+])2

√
V0 − En

+
∫ x0

−x0

√
fm(x)(Re[χ(z(x))])2 dx

]1/2

. (6.17)

6.4. The limiting case for k → 0

In the limiting case for k → 0 the relation between x and z is very simple (see equation (4.4)),
and it is convenient to express the corresponding properties in the variable x. Here we will
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denote χi(z(x)) and χ(z(x)) by χi(x) and χ(x). The relation between χ1(x) and χ2(x) is

χ1(−x) = χ2(x). (6.18)

Let us introduce the parameters

θn = π

4

√
En, n = 0, 1, 2. (6.19)

Ground and second excited states (k = 0). In both cases the ratio d2/d1 is unity. It then
follows from the definition of χ(x) that it is even function given by

χ(−x) = χ(x) = 2 cos(
√

E tan−1 x). (6.20)

The wavefunctions are

ψn(x) =


Cn

√
2 cos θn eκn(1+x), x < −1

2Cn√
1+x2

cos(
√

En tan−1 x), |x| < 1

Cn

√
2 cos θn eκn(1−x), x < −1,

(6.21)

for n = 0, 2.

First excited state (k = 0). The ratio d2/d1 is equal to −1 so that χ(x) is an odd function
given by

χ(x) = −χ(−x) = −2i sin(
√

E tan−1 x). (6.22)

The wavefunction is

ψ1(x) =


−C1

√
2 sin θ1 eκ1(1+x), x < −1

2C1√
1+x2

sin(
√

E1 tan−1 x), |x| < 1

C1

√
2 sin θ1 eκ1(1−x), x < −1.

(6.23)

In all the three cases the normalization constants Cn may be expressed as

1

Cn

=
[
π + 2

(
1 + (−1)n cos 2θn√

V0 − En

+ (−1)n
sin 2θn√

En

)]1/2

. (6.24)

7. Conclusion

In this paper we have proposed a new solvable model wherein the potential and effective mass
are rational functions of spatial coordinate. The novel feature of our model is that it may be
mapped to well-known periodic associated Lamé potential in constant-mass scenario. This
fact is clearly responsible for solvability of the model. It may be mentioned that the list of
solvable models in effective mass framework is rather short. Our work has definitely enhanced
this set by introducing a wide class of rational potential and mass functions. The important
difference of our work compared to recent efforts is that we consider the variation of mass
inside a finite region, and both potential and mass are constant outside. The advantage of
considering variation of the mass inside a finite interval instead of a full line is that the mass
remains finite and non-zero everywhere, as it should be.

We have examined the bound-state spectrum for different values of the ordering parameters
α, β, γ and elliptic modulus k2, and have discussed the properties of the corresponding
wavefunctions. It is observed for both α = γ and α 
= γ cases that the ordering parameter
β has a critical value above which no bound state exists. But number of levels increases
with decreasing values of β. Some peculiarities have been noted in the spectral properties
(e.g. the existence of bound states for constant potential V (x)) in contrast to the conventional
situation where mass is constant. The qualitative observation is that the discrete energy levels
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for bound states of our EM Hamiltonian for nonzero k lie only inside the allowed band and
in the continuum for corresponding constant-mass periodic associated Lamé Hamiltonian.
Moreover, as a by-product of our numerical procedure we have found some new curious
relations for the solutions χi(z) of associated Lamé equation, which seem to be universal. For
example the form of the second relation of (6.4) for the solutions χi(z) at E = E0 (inside
the allowed band of corresponding associated Lamé potential) is not related with our physical
problem.

Some direct generalizations of our model are possible. For instance, the application of
SUSY transformations to enlarge the class of rational models and the inclusion of scattering
states with E � V0 are under consideration. Further it will be interesting to investigate the
validity of the above-mentioned relations between the solutions of associated Lamé equation
for other values of E. The special exploration of k → 1 limit of our model also seems to be
promising [59].
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Appendix

In the following we will mention basic definitions and the relations involving elliptic functions,
which we use in the text (for more details, see [59–61]). Consider two real numbers k2 and
k′2 such that

k2 ∈ (0, 1), k′2 = 1 − k2. (A.1)

These two numbers are called respectively elliptic modulus and complementary modulus,
and are basic parameters in the constructions of elliptic functions. The amplitude function is
defined by

ϕ(z, k) = am(z, k), z(ϕ, k) =
∫ ϕ

0

dτ√
1 − k2 sin2 τ

. (A.2)

From here the three Jacobian elliptic functions are defined by

sn(z, k) = sin ϕ, cn(z, k) = cos ϕ, dn(z, k) = dϕ/dz. (A.3)

These functions are called sine-amplitude, cosine-amplitude and delta-amplitude respectively.
For simplicity, in equation (2.21) in the text, and also in the following, we have suppressed
the explicit modular dependence and write simply sn z, cn z, dn z. These are doubly-periodic
functions of periods (4K, 2iK ′), (4K, 4iK ′) and (2K, 4iK ′), respectively, and are usually
defined for a complex variable z. Nevertheless in our case z is always real. The quarter
periods K and K ′ are the real numbers given by

K(k) ≡ K = z(π/2, k), K ′(k) ≡ K ′ = K(k′). (A.4)
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K is called complete elliptic integral of second kind. Noting the following relations

sn(z + K) = cn z

dn z
, cn(z + K) = −k′ sn z

dn z
, dn(z + K) = k′

dn z
, (A.5)

sn(z + 2K) = −sn z, cn(z + 2K) = −cn z, dn(z + 2K) = dn z, (A.6)

we see that the associated Lamé potential in equation (2.21) is 2K-periodic or K-periodic,
according as µ 
= ν or µ = ν. The function sn z is odd with a simple zero at z = 0, while
cn z, dn z are even functions; cn z has a simple zero at z = K , but dn z has no zeros for real z.
The precise value of the point x0 is obtained as x0 = 1/

√
k′ from the values

sn

(
K

2

)
= 1√

1 + k′ , cn

(
K

2

)
=

√
k′

√
1 + k′ . (A.7)

Some other relevant relations are

sn2z + cn2z = 1, dn2z + k2sn2z = 1, (A.8)

sn′z = cn zdn z, cn′z = −sn zdn z, dn′z = −k2sn zcn z. (A.9)

In the two limits k → 1 and k → 0, the elliptic functions degenerate into hyperbolic and
trigonometric functions

sn z
k→1−→
k→0

{tanh z

sin z
, cn z

k→1−→
k→0

{sech z

cos z
, dn z

k→1−→
k→0

{
sech z

1
, (A.10)

where the quarter-periods go over

K
k→1−→
k→0

{∞
π/2

, K ′k→1−→
k→0

{
π/2
∞ . (A.11)

Weierstrass elliptic function ℘(z; g2, g3) ≡ ℘(z) is defined by

℘(z) = 1

z2
+

∑
m,n

′
[

1

(z − 2mω1 − 2nω3)2
− 1

(2mω1 + 2nω3)2

]
, (A.12)

where the symbol
∑′ means summation over all integral values of m, n except m = n = 0, ω1

and ω3 being half-periods of ℘(z). In our case, these are defined through

ω1 = K, ω3 = iK ′, (A.13)

and the invariants g2, g3 are given by

g2 = 4

3
(k4 − k2 + 1), g3 = 4

27
(k2 − 2)(2k2 − 1)(k2 + 1). (A.14)

The above choice corresponds to the case when the discriminant � = g3
2 − 27g2

3 > 0, and so
the three numbers ℘(ωi) ≡ ei, i = 1, 2, 3 are always real (e1 > e2 > e3), where ω2 = ω1 +ω3.
It may be mentioned that ei are the three roots of the equation

4t3 − g2t − g3 = 0, (A.15)

and, for simplicity, we have chosen the scale e1 − e3 = 1. Weierstrass elliptic function is an
even function; its derivative ℘̇(z) is an odd elliptic function with the same periods and satisfy
following identity:

℘̇2(z) = 4
3∏

i=1

[℘(z) − ei]. (A.16)
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The relations between Weierstrass elliptic function and Jacobian elliptic functions, with
our choice, are

℘(z) = e1 +
cn2z

sn2z
= e2 +

dn2z

sn2z
= e3 +

1

sn2z
. (A.17)

Weierstrass zeta function ζ(z; g2, g3) ≡ ζ(z) and sigma function σ(z; g2, g3) ≡ σ(z) are
quasi-periodic functions defined by

ζ̇ (z) = −℘(z),
σ̇ (z)

σ (z)
= ζ(z), (A.18)

and satisfy the following relations:

ζ(−z) = −ζ(z), ζ(z + 2ωi) = ζ(z) + 2ζ(ωi),

σ (−z) = −σ(z), σ (z + 2ωi) = −σ(z) exp[2ζ(ωi)(z + ωi)].
(A.19)

The addition formulae for these functions are

℘(z1 + z2) = 1

4

[
℘̇(z1) − ℘̇(z2)

℘ (z1) − ℘(z2)

]2

− ℘(z1) − ℘(z2), (A.20)

ζ(z1 + z2) = ζ(z1) + ζ(z2) +
1

2

℘̇(z1) − ℘̇(z2)

℘ (z1) − ℘(z2)
. (A.21)

We will now derive the energy equation (2.34). Using relations (A.13)–(A.19) and the
addition formula (A.21), and noting that

℘(z + 2ωi) = ℘(z), ℘ (−z) = ℘(z),

℘̇(z + 2ωi) = ℘̇(z), ℘̇(−z) = −℘̇(z),
(A.22)

it is not very difficult to derive the following relations:

χ̇±
1 = A±χ±

1 , χ̇±
2 = −A∓χ±

2 , (A.23)

where χi(z) and A± are given by (2.23) and (2.35). Inserting the expressions for χ̇±
i from

(A.23) into (2.33), the energy equation (2.34) will readily follow from (2.32).
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